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ABSTRACT:  A series of experiments is described in which a novel prescription for the
identification of plastic strain is tested to determine its validity in the context of the
strain-space formulation of rate-independent plasticity. Biaxial experiments were
performed on several thin-walled aluminum 1100-O cylindrical specimens.

INTRODUCTION:  Although plastic strain is a key element in most plasticity theories,
controversy still exists on how to identify it in the context of finite deformations.
Numerous methods for measuring plastic strain have been suggested in the literature, but
most are only valid for certain types of material behavior.1 Casey and Naghdi [1992]
proposed a prescription for identifying plastic strain that can be used for both finite and
infinitesimal deformations.

THEORETICAL BACKGROUND:  Let the tensors E and S denote the Lagrangian
strain and the symmetric Piola-Kirchhoff stress. The plastic variables Ep, κ , and α
represent the plastic strain, the work hardening parameter, and the shift tensor. There
exist a stress response, S = Ŝ (E, Ep, κ, α), its inverse, E = Ê (S, Ep, κ, α), and a smooth
yield function g(E, Ep, κ, α) in strain space, such that g = 0 represents a smooth yield
surface that encloses the elastic region in strain space. For unloading or neutral loading,
the plastic variables remain fixed. During loading, pE&  = ρ ĝ , κ&  = λ ĝ , and α&  = β ĝ ,
where ρ, λ, and β are constitutive response functions that depend on E, Ep, κ, and α.

The prescription for identifying plastic strain is stated as follows: (1) Determine
the point on or within the yield surface in stress space that minimizes the value of the
norm S  = (  S S⋅ )1/2 of the stress tensor. Let Sp denote the stress at that point. (2) Unload
by any elastic path to the stress Sp. (3) Measure the strain corresponding to Sp. This value
of strain is identified as the plastic strain, Ep.

EXPERIMENTAL SETUP:  Extruded aluminum 1100 tubing was machined into 9 in.
long cylinders having dimensions of 2.017±0.001 in. inside diameter and 0.100±0.001 in.
                                                  
1 For example, identifying plastic strain as the strain corresponding to zero stress is unacceptable in cases
where the yield surface in stress space does not enclose the origin.



wall thickness. The cylinders were annealed at 650°F for one hour, resulting in an
average grain size of 0.003 in. Tensile, compressive, and torsional loads were applied to
the specimens by an MTS closed-loop hydraulic testing machine. Strains were measured
using 45° rosettes. A 5 x 10-6 strain offset definition of yield was adopted. Load
increments of 85 psi were applied at a rate of one increment per minute. During plastic
loading to a new yield surface, strain rates were kept under 20 x 10-6/min.

PROCEDURES, RESULTS AND DISCUSSION: Results from one of the aluminum
specimens will be reported here. Three tests were conducted, each using the following
procedure (refer to Figs. 1 - 3):  First the specimen was preloaded to an elastic-plastic
State A, and the corresponding yield surfaces in stress and strain space were determined.
The specimen was then unloaded to p

AS , and p
AE  was measured. Next, the specimen was

loaded to State B by applying a strain increment dE1 and corresponding stress increment
dS1. The yield surfaces for State B were determined, and the new plastic strain p

BE  was

measured after unloading to p
BS . Starting from the same preload point used for State B,

the specimen was loaded to State C by applying a strain increment dE2 and corresponding
stress increment dS2. Maximal unloading was performed to p

CS , and p
CE  was measured.2

Figure 1: Test 1 in (a) Stress space, and (b) Strain space

The experiments were designed to test if the plastic strain found using the above
prescription would satisfy a flow rule of the form pE&  = ρ ĝ . The fact that ρ depends only
on the current state implies that the direction of the plastic strain rate is independent of
the direction of the strain rate during loading. Hence, the plastic strain increments p

1dE

and p
2dE  resulting from the two strain increments dE 1 and dE2 should have
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2 For Tests 2 and 3, it was not necessary to find the yield surfaces for State C; the origin in stress space was
found lie within the elastic region, so Sp

C = 0, and hence E
p

C was the strain at zero stress.
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approximately the same direction in strain space.3 In Test 1, the plastic strain increments
do not appear to be parallel (possibly due to the high curvature of the yield surface at the
point of loading). However, in Tests 2 and 3, p

1dE  and p
2dE  are approximately parallel in

strain space even though dE1 and dE2 have radically different directions. The results are
in agreement with the flow rule postulated in the strain-space formulation.

Figure 2: Test 2 in (a) Stress space, and (b) Strain space

Figure 3: Test 3 in (a) Stress space, and (b) Strain space
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3 The assumption implicit in this argument is that the direction of the response function ρ in the flow rule
remains approximately constant along the incremental paths dE1 and dE2.
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